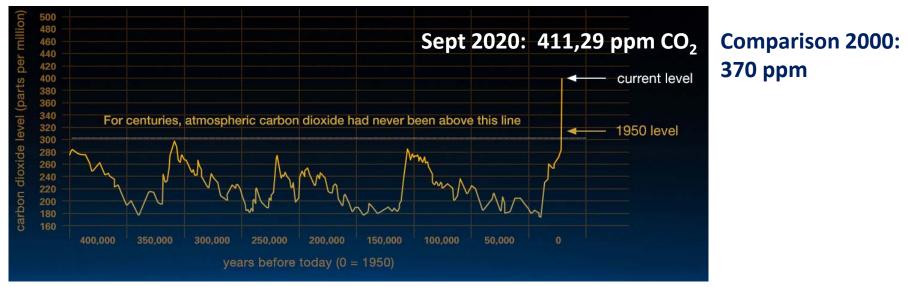


2^{do} Seminario Internacional Online sobre Contaminantes Orgánicos Persistentes Experiencias en mejores técnicas disponibles y mejores prácticas ambientales

WEEE Plastic Recycling


Achievements and challenges in the WEEE plastics circular economy

Chris Slijkhuis General Manager MGG Polymers – Austria <u>www.mgg-recycling.com</u> Board member at EERA <u>www.eera-recyclers.com</u>

Exponential increase of CO2 Emissions

https://climate.nasa.gov/climate_resources/24/

CO₂ is not visible and can be emitted without any costs

Personally I consider this to be the world largest environmental threats – "Global Warming"

And......this CO₂ discussion is completely separated from any discussions about POPs

The production of virgin tech-polymers

Procurement

Processing

- Oil is extracted
- Transported to refineries
- Non-renewable resource
- Global market

- Huge refineries produce fractions
- Polymerisation plants polymers
- Huge amount of energy needed
- Some 100 GigaJoule per MT

Selling

- Virgin plastics
- Produced in large quantities
- Volatile prices
- Global market

The production of PCR tech-polymers

Procurement

- WEEE (E-Waste) plastics
- Growing supply
- Produced by WEEE recyclers
- Regional market

Processing

- Mechanical 'mining' process
- Innovative technologies
- < 10% of energy
- Save about 3-4 tons CO₂/ton PCR

Selling

- 100% PCR tech-polymers
- Virgin-like quality
- Stable prices
 - For "green" sustainable products

- It is difficult to share video sequences in a virtual setting.
- My recommendation is to have a look at this TED talk:

https://www.ted.com/talks/mike_biddle_we_can_recycle_plastic

- WEEE plastics recycling in Europe
- Volume, Quality, Returns of WEEE plastics
- LCA of the recycling of WEEE plastics
- WEEE Plastic pre-processing and recycling in China
- Sorting techniques
- The example of the complicated legislation with example BFRs

This session is only about WEEE plastics

Many types of WEEE plastics.....

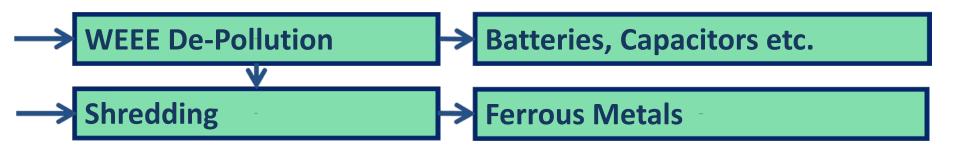
Fridges

CRT Displays

→ WEEE De-Pollution

De-Pollution is a legal requirement.....

De-Pollution with a "Smasher"

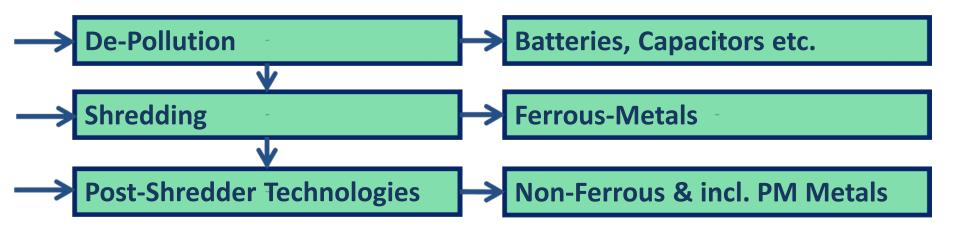

- Müller-Guttenbrunn Group Patent
- What is taken out?
 - Compenents such as
 - Capacitors > 25mm
 - Batteries
 - Toner Cartridges
 - Valuable components, such as
 - Printed Circuit Boards
 - E-Motors and spools
 - Disturbing fractions, such as
 - Wood
 - Fibres and textiles

Treatment of the de-polluted WEEE

MGG Metrec operates a specialized Shredder Technology for WEEE

EVA Shredder, tailored to treat WEEE

WEEE Shredding


- Extreme efficient air treament
- Fire fighting techniques
- Noise reduction
- Separation of ferrous metals
- Shredder residues
 - Heavies
 - Lights
 - Dust
 - ...and clean air (<2 mg/m3 of dust)</p>

Treatment of the WEEE Shredder Residues

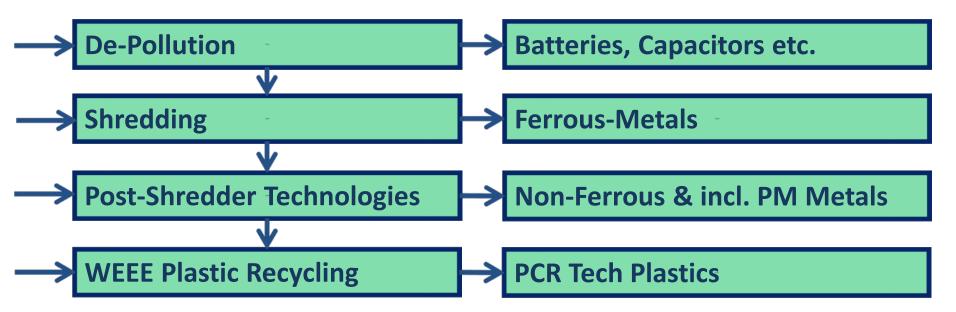
MGG Metran separates non-ferrous metals

Post-Shredder Technologies for Shredded WEEE

"Heavies" and "Light" Shedder Residues

GMGG

- Dry, Wet and High-Tech Separation Techniques:
 - Sieving
 - Heavy Media Separations (HMS)
 - Induction based (Eddy Current)
 - Sensor based separation techniques
 - Small grain separations etc.


The result consist of concentrates:

- Non-ferrous Metals (Copper, Aluminium, Zinc, Brass, Precious Metals)
- Printed Circuit Boards
- A wild mix of tech plastics

MGG Metran is a "Post-Shredder Technology" Specialist

Plastic Recycling from WEEE

MGG Polymers treats the last remaining fraction

MGG Polymers WEEE Plastics Recycling

Goods-In and Pre-processing

- Each receipt is assayed
- Material cleaned from non-plastics
- High-tech plastic separation
 - Cleaning and separations
 - PP, HIPS, ABS and PC-ABS
- Blending, Extrusion and Compounding

Lab Analyses RoHS Physical, Chemical & Rheologic parameters

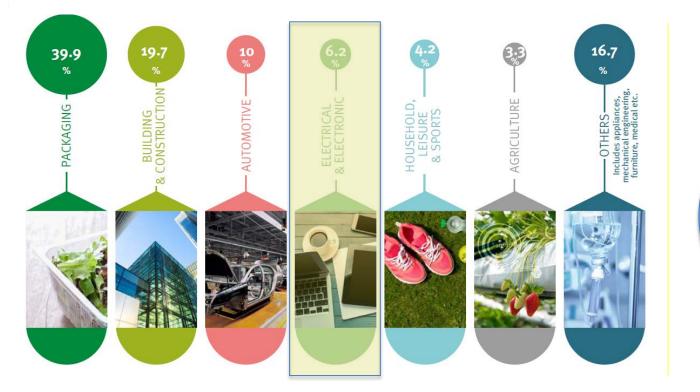
Output Material some 25 000 MT of PCR plastics drop-in replacing virgin

Some examples of products with 100% MGG Polymers PCR Plastics

Post-Consumer Recycled Plastics (PCR Plastics)

This is different from **Post-Industrial Recycled** Plastics (**PIR plastics**)

What is possible with 100 % PCR Plastics


Post-Consumer Recycled Plastics (PCR Plastics)

These PCR plastics are REACH and RoHS compliant

"Forward" Approach

Plastics volume in terms of demand for EEE (Europe)

GMGG POLYMERS

Total Converter Demand 49,9 Mio MT

Quelle Plastics Europe

The demand for EEE is approx. 3.1 Mio MT's in Europe

"Reverse" Approach Estimating the quantity of plastics in WEEE (Europe)

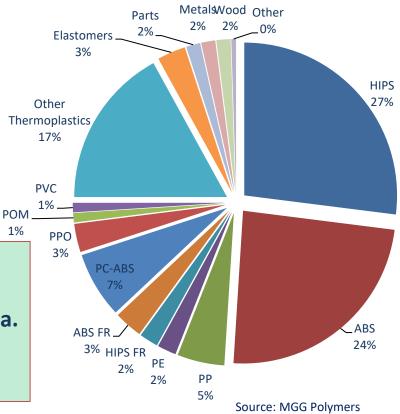
European Market	Mio MT	in %
Placed on Market (POM) EEE	9,50	
Officially reported collections/recycling	3,30	35%
Informal collections/recycling	3,20	34%
Exports (of which 1,3 Mio MT not documented)	1,50	16%
"Scavenging" for parts	0,75	8%
Losses (such as through waste bin)	0,75	8%

1,4 Mio MT

Plastic Content in WEEE per category

SDA	30%
LDA	15%
ICT	20%
Tools	10%
Temp Control Equipm.	25%
Screens	20%

Source CWIT – MGG Polymers

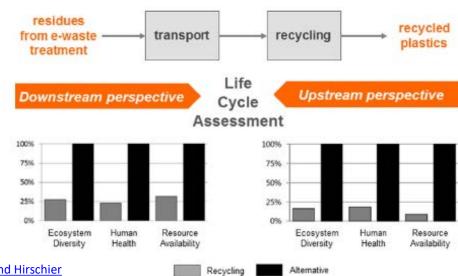

Qualitative Approach Average composition of WEEE plastics for recycling

WEEE Plastics	
ABS	24%
HIPS	27%
Polyolefines	7%
PC and PC-ABS	7%
Other plastics incl. BFR	29%
Parts and metals	4%
Other (mainly wood)	2%

Recycling WEEE Plastics at a yield of some 60 % has the potential of **3.8 Mio Metric Tons of CO2 savings p.a.**

The equivalent of a 440 000 inh. city

Scientific Approach


LCA PCR WEEE Plastic versus

1. Incineration of WEEE plastic and

Recycling PCR WEEE plastics 4 times better than Municipal Solid Waste Incineration

2. Production virgin plastics

Recycling PCR WEEE recycling option 6-10 times better than producing virgin plastics

If WEEE plastics recycling makes so much sense, why is there so little of it.....

Separation of plastic is difficult

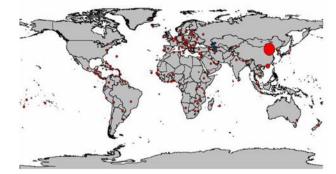
WEEE Plastics

If WEEE plastics recycling makes so much sense, why is there so little of it.....

Most of the material disappears from Europe

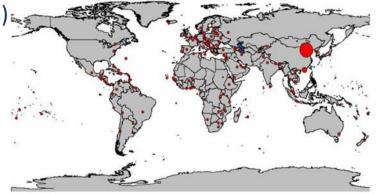
"The ways of plastics...."

The western Africa route



Resulting in losses of well over 1 Mio MT from the EU Urban WEEE Mine

The China route



The most frequently used route was for a long time....

Export to China (8 Mio Metric Tons of waste plastics)

- Of that volume >3 Mio from Europe
- A lot of the WEEE plastics (no statistics)
- WEEE plastics notification duty in many countries

- This has stopped completely and moved to other parts of South East Asia
- Now export to the Far-East will become much more difficult ("Norwegian Proposals")

Not a stable market and it will become more difficult

Concerns

- What happens with the non target plastics
 - Discarding, landfilling or open-air incineration?
- What happens with hazardous content?
 - Brominated Flame retardants, Cadium in coloring agents etc.
 - Brominated Flame Retardants (BFR's) in toys Matel case
- How about health and safety hazards?
 - This is why China has banned the import of mixed plastic wastes
 - Started off with green fence, then National Sword followed by official ban
 - Active since January 1st 2018

But there is a market for re-processed plastics

It does not require a high-tech factory

- Getting to a concentrated volume is the most important task
 - How can it be organized that plastics "get together" -> volume required
 - It might need some grinding or pressing to allow plastic to travel over some distance
 - Ground plastics have a specific density of 3 cubic meter per metric tonne

Once together there are relatively easy techniques

- To get the metal out of the fractions to generate value
- Even to get BFR's concentrated but do we want that see also UNIDO paper
- Ideally this concerns wet-processing, but water might be a problem?

Let's discuss what infrastructure could be made available

- Logistics infratructure loading unloading
- What permitting is required -> Notification requirements as from 1/1/2021!!
- It water, electricity etc. available

Let's create a value with plastics

Ways of preparing material for transport

But there are limitations of these simple techniques

Manual dismantling

- Don't count on plastics markings to be correct
- Large pieces have a very low density (not more than 8 MT per full load)
- If transport is needed, grinding or pressing is required

Pre-processing of plastics

- Grinding, cleaning and density baths
- After "washing" and wet separations a "spinning" is required
- Is water, electricity etc. available?

Some remarks about high-tech ID-ing of plastics

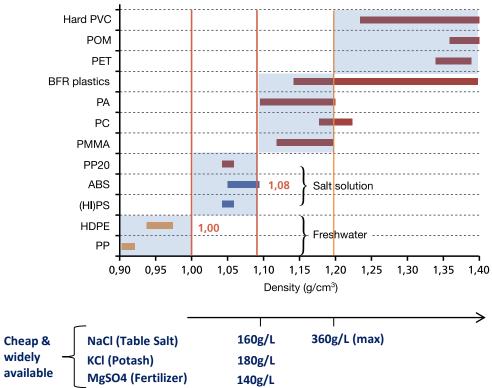
- Near Infra-Red limited to light coloured plastics no blacks
- XRF handheld watch out with radiation! good equipment but not cheap

Let's create a value with plastics

Simple sorting methods

- Origin of plastic
- Markings (not always correct)
- Flexibility/breakability
- Sound when hit
- Density

- Reactions to solvents
- Smell when burnt (not recommended!)



Source: A.Haaarman EMPA

How to sort....

Density

Solvents

Acetone (nail polish remover) Limonene (orange/lemon extract)

-Makes <u>PS</u> and <u>HIPS</u> sticky

-Leaves white mark for <u>PC</u> and <u>PC-ABS</u>.

If WEEE plastics recycling makes so much sense, why is there so little of it.....

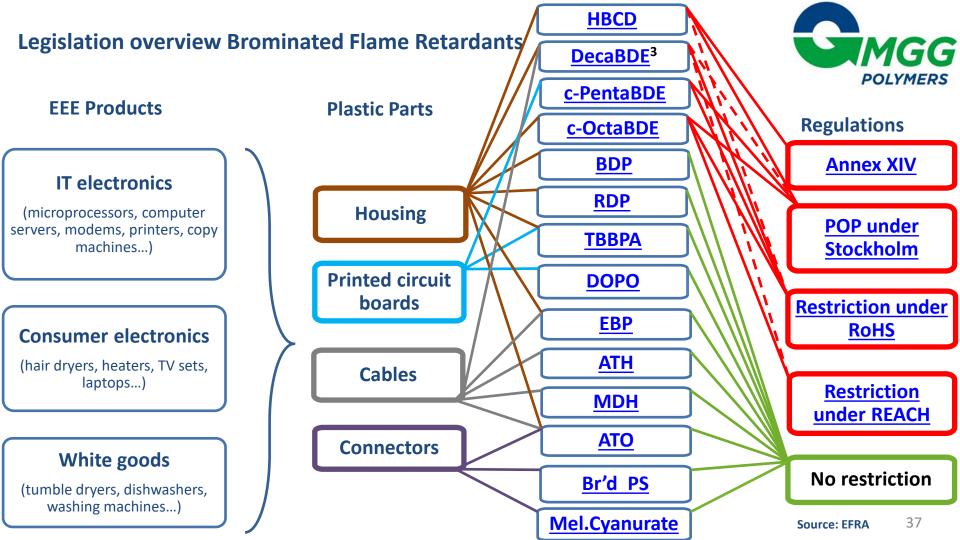
- Very few companies invested in WEEE plastics recycling
- Due to the losses of material from Europe
- As an ever increasing complexity of legislation

Let's look at Brominated Flame retardants as example

The compexity of the legal framework

EU Waste Legislation

- EU Waste Framework Directive
- EU Waste Shipment Regulation
- EU WEEE Directive


UN Conventions

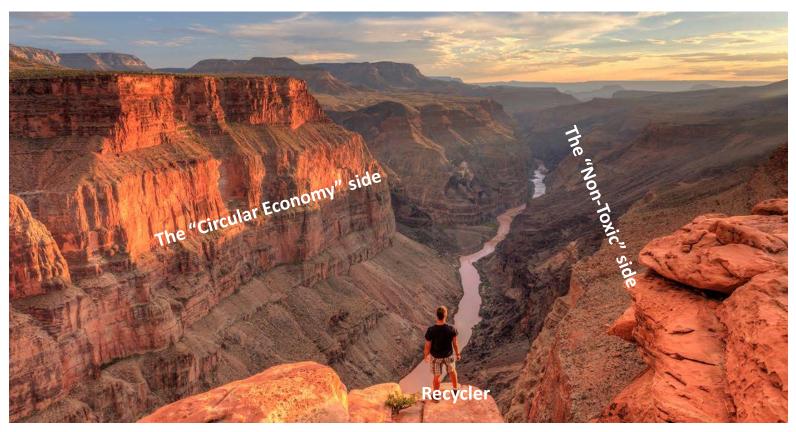
- Basel Convention -> transboundary shipments of waste
- Stockholm Convention -> POP's
- Rotterdam Convention -> hazardous substances & chemicals

Product Legislation

- EU General Product Safety Directive (GPSD)
- REACH Regulation
- RoHS Directive for EEE

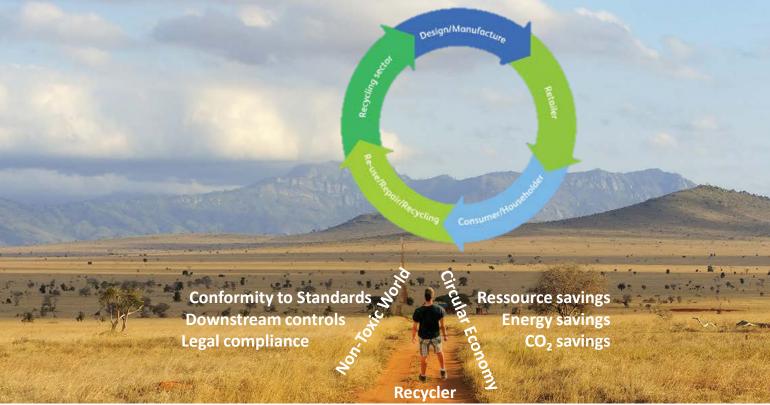
A continuous flow of new legal initiatives

Deca-BDE as example of this complexity

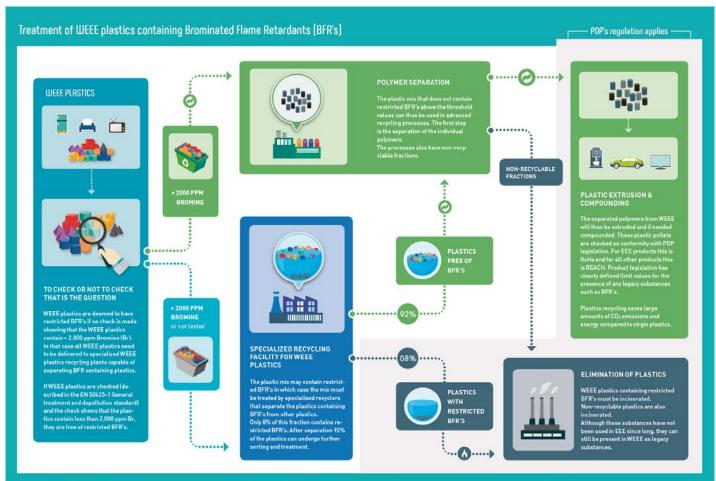


- RoHS 1 and 2 as well as WEEE Directive
 - Discussions and decisions to stop using PBDE's in new EEE as from 2004
 - De-pollution criteria (subsequently in standards such as WEEE Labex and Cenelec)
- Differing interpretations on classification of plastics with BFR's in WSR
 - Original only refers to PBB's, but a number of CA's decided to include other BFR's
- Stockholm and Basel conventions COP May 2017
 - POP-listing of deca-BDE (after penta-, octa-BDE, HBCD in previous years)
 - No thresholds fixed, but proposals of thresholds of as low as 10 or 50 ppm
 - 10 or 50 ppm would stop the recycling of WEEE plastics
- Discussion about this complexity is extremely difficult

Ever continuing discussions since 2004 creating legal uncertainties


This is how it feels.....

This is how we believe it should be.....



intelligent balance between "Non-Toxic" and "Circular Economy"

An EERA Brochure of how it should be done..... separating BFRs

What is needed to keep on recycling and create a circular economy

Some legal certainty and clarity is required to stimulate this new recycling industry

A threshold for POP BFR Substances such as deca-BDE -> 1.000 ppm

- A threshold of 10 ppm is below the practical detection limit for deca-BDE for all practicle QM purposes
- To place this in a context: a flame retarded TV housing has 150 000 ppm
- Recycling requires analyses to be made on industrial scale (i.e. low cost XRF methods)
- These are validated for 1000 ppm

We need the recognition that POPs in WEEE plastics do not make then hazardous

- BFRs are firmly embedded in the polymer structure of the solid plastic
- No plastic recycling plant has a permit to accept hazardous wastes

We need a practical and simple procedures for transboundary transports

- Easier to obtain notifications
- Allowing pre-processed plastics to be transported to larger recycling facilities
- So that they can be properly recycled
- Right now too many BFR containing plastics are exported illegally

What is needed: an intelligent balanced approch for a "Circular Economy"

Why recycling of tech plastics from/for electronics

Without plastics recycling EU recycling targets impossible

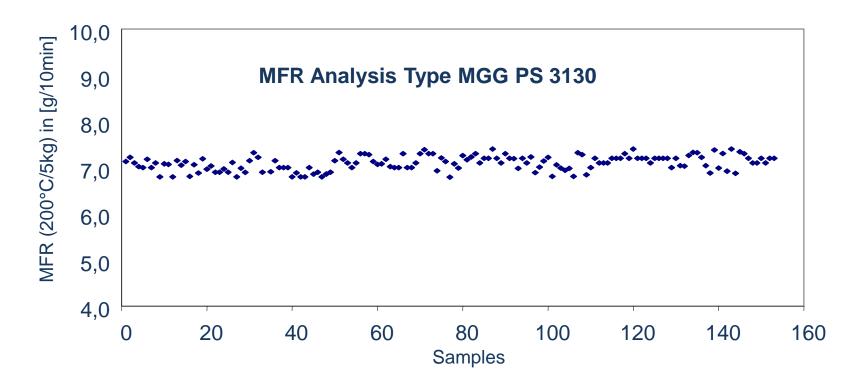
- WEEE and ELV directives are clear in their targets
- WEEE 65 % for Small Domestic Appliances
- ELV 85 % as from 2015

Increasing pressure from the market and environment

- Consumers increasingly become aware and look for "green products"
- See: <u>https://www.youtube.com/watch?v=4b9kNdzMv_o&t=112s</u>
- EU wants to develop a "recycling society" and a "Circular Economy"
- The EU plastics strategy

Replacing virgin plastics with recycled makes sense

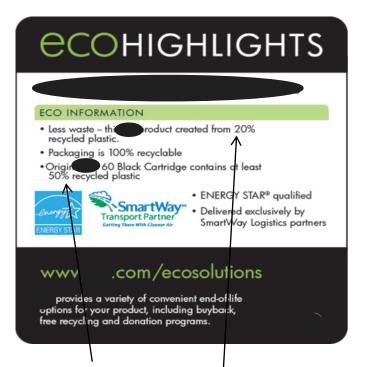
Plastics recycling... making plastics sustainable


PCR Recycled Products are becoming popular

Stable Properties are possible

RoHS and REACH Compliant Plastics

Some examples of recent green products



"Made with 55% recycled plastic, the Ultra Silencer Green from Electrolux is the most energy-efficient cleaner on the market. Its new, high-efficiency motor reduces the Ultra Silencer's energy consumption by 33% compared to a standard 2,000 watt vacuum cleaner. Because <u>Ultra Silencer</u> Green is made out of recycled materials, it is only available in black, as this color allows to achieve the best looking finish and quality when using recycled materials. To signify Eco friendliness of the Green vacuum cleaner, Electrolux designers added signature elements of green on the graphics and buttons."

Printer Cover and Components

Printer lid is made out of 100% PCR ABS

Product packaging advertises % recycled content

We have put our teeth in E-Waste plastics

and do not want to loose them...

