POPs and climate change

Derek Muir

Environment & Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON

Outline

- Climate warming recent predictions and observations
 - Extraordinary warming of the Arctic makes it a sentinel region
 - Influence of warming on pathways of pollutants from mid-latitude regions
- The Arctic Monitoring and Assessment Program and its environmental monitoring programs for POPs
 - Atmospheric trends of PAHs and PCBs climate influences
 - Glacial runoff and permafrost thaw influencing fluxes of PCBs to Arctic lakes
 - Changes in the food webs of polar bears and seals impact on bioaccumulation of PCBs
- Summary and Knowledge gaps

Predicted annual mean temperature change at a global warming level of 1 °C IPCC 6th Assessment 2021 Zonal mean

How Could Climate Change Influence the fate of POPs?

Summer and Winter surface air temperatures (°C) for the period 2011-2021 relative to 1951-1980

How Could Climate Change Influence the fate of POPs?

Summer and Winter surface air temperatures (°C) for the period 2011-2021 relative to 1951-1980

Increased atmospheric transport

- On dust particles or as gases from warmer soils
- Release from the expanded area of open ocean waters
- On smoke particles from more frequent forest fires Greater inputs from previously buried sources
- From melting glaciers and thawing permafrost Changes in food webs and diets of top predators
- Loss of Arctic sea ice habitat
- Change in sea ice associated diets
- Transient/subarctic species moving north Similar effects likely in the Antarctic peninsula

°C

Pathways for POPs & CEACs to reach the Arctic or other remote regions that could be impacted by climate change

(Hung, Halsall et al. Ch 2.2 AMAP POPs-CEAC-Climate assessment; Ma et al. Global & Planet. Change 2016)

Simplified summary of climate change influences on transport pathways and transformation processes of POPs in the Arctic environment

(Hung, Halsall et al. Ch 2.2 AMAP POPs-CEAC-Climate assessment)

ARCTIC MONITORING & ASSESSMENT PROGRAMME (AMAP)

- Working group of the Arctic Council
- Monitor/assess the status of the Arctic region with respect to pollution and climate change
- Involves all circumpolar countries and other countries active in Arctic research
- Results based on contributions from national programs
- Sound science-based, policy-relevant assessments

Long term studies of contaminants in the Arctic

- Monitor & assess the status of contaminants & climate change issues
- ✓ Monitoring & surveillance of contaminants in air & wildlife
- ✓ Assess climate change –contaminant interaction
- ✓ Inform Arctic policy & decision making

Studies of chemical pollutants in air and wildlife in the Arctic: Transport pathways and major sampling locations

Persistent Organic Pollutants (POPs) & Chemicals of Emerging Arctic Concern (CEACs)

- Pesticides
- Industrial emissions and byproducts (eg. HCB, HCBD)
- Personal care products (eg UV-filters, siloxanes)
- Commercial chemicals (eg flame retardants, stain repellents)
- Microplastic & plastic additives
- Products of combustion (Dioxins/furans, PAHs)

Concerns

- Persistent
- Bioaccumulative
- Potential adverse effects for humans & the environment
- Long-range transport to remote regions

Increased Atmospheric Mobility of POPs

• Correlations found between air concentration of some POPs and large-scale climate variation patterns

Pacific/North American (PNA) Pattern

- Pressure anomalies that influences air mass transport, temperatures and precipitation.
- PNA+: higher-than-average pressure over Hawaii, lower-than-average pressure south of Alaska.

Hung et al., 2016, Environ. Pollut. 217: 52-61; Hung et al., 2005, Sci. Total Environ., 342:119-144; Becker et al., 2008, Atmos. Environ. 42: 8225-8233

- Increasing atmospheric PCBs at Storhofdi, Iceland
- May be related to deglaciation of ice caps and increased volatilization from the ocean

Forest fires in the northern boreal forests – another climate- contaminants linkage

Yu et al. Environ. Sci. Technol. 2019, 53, 2375-2382

Arctic Ocean Sea Ice retreat

- Reductions in the extent of Arctic sea ice by nearly 50% from 1979 to the present
- Longer period and larger surface area of open water result in air-water exchange

Pućko et al., 2015, Sci. Total Environ. 506–507: 444–452; Galbán-Malagón et al., 2013, ES&T, 47: 7195-7203

First Year Ice vs. Multi-year Ice

- Contaminants **enriched in brine** channels of first year ice enter the ocean annually while they are retained in multi year ice
- Melt ponds on sea ice surface concentrate POPs deposited from the atmosphere and drained into ocean underneath
- Implication on exposure of sympagic organisms that thrive in and under the ice

Modeled PCB153 and α-HCH concentrations in Arctic air and ocean water between 1950 and 2100, under the 20th century climate and the IPCC's SRES-A2 climate change scenario

Wöhrnschimmel MacLeod and Hungerbuhler ES&T 2013

Model results with SRES-A2

- Increased PCB153 in air (1.9x) and seawater (3.9x)
- Decline of α-HCH in air (0.7) and water (0.4)
- Concentrations mainly determined by changes in primary emissions, minor effect of climate change

Special Report on Emissions Scenarios – SRES_A2 from IPCC 2000 is a relatively high CO2 emission scenario

Increasing rate of ice free areas

Lake Hazen, the largest High Arctic lake, responds rapidly to climate warming

Lehnherr et al. Nature Comm 2018 St Pierre et al. Scientific Rpts 2019 Mitchelutti et al. Proc.Royal Society B: Biol. Sci. 2020

Effects of climate warming on runoff and sedimentation in Lake Hazen

- Regional annual mean temperature has increased 2.8 °C since mid-1980s
- Climate warming resulted in an 4x increase in glacial meltwater for the period 2008-2012 (Lehnherr et al. 2018)
- Average ice-free lake area has increased ~40% from 2000-04 to 2015-19
- Higher fluxes of POPs and mercury to lake sediments due to higher particle sedimentation rates

Lehnherr et al. Nature Comm 2018; St Pierre et al. Scientific Rpts 2019; Mitchelutti et al. Proc.Royal Society B: Biol. Sci. 2020

PCB profile in the dated sediment core from Lake Hazen. Comparison with modelled global emissions (Breivik et al 2007;2016)

- Maximum concentrations and fluxes coincide well with timing of global emissions
- PCB fluxes are elevated in the period 2005-2012 during high glacial runoff and sedimentation period
- Mono-chloro-biphenyls (CB-1,2 & 3) were up to 25% of Σ_{200} PCB (GC-HRMS analysis)
- Octa-chloro CBs and decachlorobiphenyl also more prominent post-2000

Muir et al. Unpublished data 2020

Long term trends of PCBs, DDTs and PFAS in muscle of landlocked Arctic char from Lake Hazen compared with increased runoff and deposition

- Landlocked char are the sole top predator in Lake Hazen
- Benthic organisms are the major food source
- **PCBs and DDTs** in char mainly influenced by global emissions rather than within lake or catchment effects
- **PFOS** concentrations correlate with glacial runoff (R²=0.46 P=0.046) while PFCAs do not

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Temporal trends of persistent organic pollutants in Arctic marine and

Number of long-term time-series (starting before year 2000) by country and species group

Country	Long-term time-series	Species group	Long-term time-series	
United States (Alaska)	186	Blue mussels	145	
Canada	323	Freshwater fish	197	
Greenland	184	Marine fish	112	
Faroe Islands	102	Seabirds	114	
Iceland	109	Marine mammals	506	
Norway	155	Total	1074	
Sweden	15			
Only a limited number have examined effects of climate on trends				

Ringed seals and polar bears: Key Arctic animals for the long-term monitoring of environmental contaminants and climate impacts

- Circumpolar distribution
- Highly sea-ice dependent
- Seals are main prey for polar bears
- Samples and indigenous knowledge from the Inuit
- Biology (diet, life history) of polar bears and seals increasingly well studied

Map in Rigét et al STOTEN 2019

Dietary trends and POP concentrations in East Greenland polar bears

(McKinney et al. Global Change Biol. 2013)

Temporal trends of Σ₄PCB and p,p'-DDE in blood plasma of adult female polar bears from Svalbard (1997-2017) Lippold et al ES&T 2019

- Adjusting results for trophic level (δ¹⁵N) and body condition index (BCI)
- % change in Red text
- Increase concentrations for p,p'-DDE after 2012

Relationship between sea ice and diet variations and concentrations of POPs in polar bears in the Barents Sea

- Greater sea ice coverage enhances the marine diet leading to better body condition index (BCI)
- Less sea ice reduces prey availability and BCI
- On a lipid basis concentrations of lipophilic POPs are higher with reduced BCI

Trends in concentrations of Σ_{10} PCBs and Σ HCH in ringed seal blubber (ng/g lipid wt) in the Central Canadian archipelago (Houde et al. Sci. Total Environ 2019)

- compared with multi year sea-ice coverage (%), total sea-ice coverage (%)
- Stronger relationship to multi-year ice

Significant R² values (P < 0.01) for POPs concentrations vs % sea ice

	Total sea ice	Multi- year sea ice
Σ ₁₀ PCB	-	0.26
ΣΗCΗ	-	0.50
ΣCHL	-	0.26
ΣCBz	0.36	0.52

Positive relationship of mercury and PCBs with greater multi-year ice may be due to greater abundance of arctic cod and a longer food web

Ringed Seal

Arctic cod (*Boreogadus*) and Polar Cod (*Arctogadus*)

under ice **amphipods** (*Gammarus wilkitzkii*), *Mysis* sp., **shrimp** (*Lebbeus* sp.), *Themisto libellula*,

Turbid lakes – another effect of Arctic climate warming

- Lake colour change due to retrogressive thaw slump activity observed for 288 lakes on Banks Island (1984–2016)
- Annually resolved time series of numbers of lakes visually changing colour (from dark blue to turquoise or beige) using Google Timelapse (Lewkowicz & Way, Nature Comm 2019)

Permafrost degradation in the West Lake watershed has influenced PCBs and mercury in river water. Subaqueous slumps in West Lake have changed its turbidity

• Disturbed terrain within the West lake catchment

 Saturated clay slurry surface flows and newly formed channels

Highly turbid water

VestMet

River

West Lake

3 km

EastN

East

East

East Lake

Increased PCB inputs to West Lake have increased concentrations in landlocked Arctic char

- Much higher PCBs in West Lake suspended particulates after snow and permafrost melting
- PCBs in West Lake char have increased when expressed on lipid weight basis
- PCBs have declined in East Lake, similar to trends in char in other Arctic lakes

Cabrerizo, Muir et al. unpublished data 2019

Projected changes in chemical emissions, environmental conditions, and ecosystems that illustrate the complexity in trends of POPs in the Arctic under future climate change

Where are the primary sources of POPs, and how do they reach the Arctic?

ONTAMINANTS

Known

- Mid-latitude urban/industrial areas are the sourc regions
- Atmospheric transport and deposition for most POPs. Ocean transport for PFOS.

Partially Known/Uncertain

- Balance between primary and secondary sources, especially in forecasts due to uncertain mass transfer and degradation
- Emission inventories for PCBs, HCHs, HCB, PAHs, (PCDD/Fs)...

Unknown

- Transport mechanisms for chemicals with novel properties.
- Emission inventories for other POPs and CEACs!

How are emissions and source locations of POPs and potential future POPs affected by climate change?

ONTAMINANTS

Known

- Higher temperature > higher volatilization emissions of SVOCs
- Climate change will lead to migration of people and resource exploitation in the north
- Partially Known/Uncertain
- Scenarios for increased emissions of chemicals in the Arctic have been proposed
- Higher incidence of forest fires and associated release of PAH and PCDD/F expected. Fires could re-mobilize PCBs & other POPs.

Unknown

- Re-introduction of banned POPs to address other CC-induced problems (eg. DDT?)
- Non-compliance due to lack enforcement because CC causes bigger problems that take away attention.

Q3. How does climate change affect transport of pollutants to the Arctic?

Known

- Higher temperature > higher secondary emissions of SVOCs
- Ice cover loss from Arctic Ocean > increased deposition of PCBs, volatilization of HCHs
- Partially Known/Uncertain
- Temperature dependence of degradation half-lives. Likely degradation is a bit faster but highly uncertain!
- Regional-scale case studies on mobilization and deposition

Unknown

- Net effect of increased incidence of extreme weather events on mobilization and transport?

How well can we anticipate how old and new persistent chemicals v impact the Arctic in a changing future climate?

Known

- We can control the level of exposure of the Arctic by controlling primary emissions.

Partially Known/Uncertain

- Models are more certain for non-ionizable organics. For these substances, persistence is the key property that determines potential to be a global-scale pollutant
- Climate scenario analysis is available for selected POPs (PCBs, DDT, HCHs)

Unknown

- Future chemicals with novel properties (analogous to PFAS)
- Occurrence of "tipping point" events that break our scenarios

Implications for trend assessments and effectiveness evaluations

Known

- Climate change can affect trends, via direct and indirect processes (e.g. POR availability and food web changes, respectively).

Partially Known/Uncertain

- including climate and biological parameters in trend analyses affected decreasing rates, but rarely the general trend.
- There are indications of time-lags and more pronounced effects in recent years.

Unknown

- What other chemicals in commerce have the potential for transport and accumulation due to warming of sub-Arctic and mid-latitudes adjacent to the Arctic?
- Will local pollution from growing communities and development in a warming Arctic out rank long range transport?

POPS AND CHEMICALS OF EMERGING ARCTIC CONCERN: INFLUENCE OF CLIMATE CHANGE

SUMMARY FOR POLICY-MAKERS ARCTIC MONITORING & ASSESSMENT PROGRAMME

Available at www.amap.no

SUMMARY

POPs and Chemicals of Emerging Arctic Concern: Influence of Climate Change. Summary for Policy-makers

AMAP, 2021. POPs and Chemicals of Emerging Arctic Concern: Influence of Climate Change. Summary for Policy-makers

Forthcoming Assessment Report – Nov 2021

^{sctic} Monitoring and ssessment Programme